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Abstract

This paper presents an algorithm, the secant/finite difference algorithm, for solving sparse
nonlinear systems of equations. This algorithm is a combination of a finite difference method and
a secant method. A g-superlinear convergence result and an r-convergence rate estimate show
that this algorithm has good local convergence properties. The numerical results indicate that this

algorithm is probably more efficient than some currently used algorithms.



1. Introduction.

Consider the nonlinear system of equations
F(z)=0, (1.1)
where F:R® — R*® is continuously differentiable on an open convex set D C R*, and the Jacobian
matrix F’(z) is sparse. To solve the system, we consider the iteration
T = z-B'F(z). (1.2)
where z is the current iterate, 7 is the new iterate and B is an approximation to the Jacobian
F’(z) with the same sparsity as the Jacobian. After we finish this step, we have the information:
z, 7, and B. Our purpose is to get a B, a good approximation to F’(Z), by using as little effort
as possible.
Curtis, Powell and Reid [3] gave an efficient algorithm for sparse problems called the CPR
Algorithm, which is a finite difference algorithm, but which can take the advantage of the sparsity
to make the number of the function evaluations small. To describe the CPR Algorithm, Coleman

and Moré€ [2] gave some definitions concerning a partition of the columns of a matrix B.

Definition 1.1. A partition of the columns of B is a division of the columns into groups

¢y, € * * - ¢, such that each column belongs to one and only one group.

Definition 1.2. A partition of the columns such that columns in a given group do not have a

nonzero element in the same row position is consistent with the direct determination of B.

In order to have a good partition of the columns of B, Coleman and Moré [2] associated the
partition problem with a certain graph coloring problem and gave some partitioning algorithms

which can make p optimal or nearly optimal. For convenience, we call the CPR algorithm based

on Coleman and Mor¢’s algorithms the CPR-CM algorithm.

The CPR Algorithm can be formulated as follows: For a given consistent partition of the

columns of B, obtain vectors dy, dp, - - - d, such that B is determined uniquely by the equations

Ed" _—‘F(f-i-d.)—F(f =¥ t =l,...,p .



Notice that at each iterative step we need only to compute p + 1 function values rather than the

n + 1 values required by a straightforward column-by-column finite-difference algorithm.

As an example we consider the matrix with a tridiagonal structure:

X X 0 0 0 0
X X X 0 0 0
0 X X X 00

1.3
0 0 X X X O (1)
0 0 0 X X X
0 0 0 0 X X

A consistent partition of the columns of the matrix is ¢; = {1, 4}, ¢, = {2, 5}, and ¢3 = {3, 6}.

If we take

dl=(h70707h;070)T,
d2=(07h7010yh;0)rx

d3=(0707h70;0;h)T’

then B is determined uniquely, and the number of function evaluations required at each iteration
is 4.

In this paper, we propose an algorithm called the secant/finite difference (SFD) algorithm
for solving sparse nonlinear systems of equations. This algorithm is also based on a consistent
partition of the columns of the Jacobian. However, it uses the inférmation we already have at
every iterative step more efficiently than the CPR algorithm. The secant equation is also satisfied
by the SFD algorithm. Therefore, this algorithm can be seen as a combination of the CPR-CM
algorithm and a secant algorithm. The SFD algorithm reduces the number of function evaluations
required by the CPR-CM algorithm by one, and it has good local convergence properties. Our
numerical results show that the SFD algorithm is probably more efficient than the CPR-CM algo-
rithm. The SFD algorithm and some of its properties are given in Section 2. A Kantorovich-type
analysis for the SFD algorithm is given in Section 3. A g-superlinear convergence result and an
r-convergence order estimate of the SFD algorithm are given in Section 4. Some numerical results

are given in Section 5.



In this paper, ||.|| r indicates the Frobenius norm of a matrix, and ||.|| indicates the /-

vector norm. We use ‘ \ ’ to denote the subtraction of two sets; that is,

A\B={v: vEAandv ¢B}.

For a sparse matrix B, we use M to denote the set of pairs of indices (s, 1), where b;; is a struc-

turally nonzero element of B, i.e.

M ={(i,5): b; #0}.

2. The SFD Algorithm and its Properties.

Given a consistent partition of the columns of the Jacobian, which divides the set {1,...,n}

into p subsets ¢y, ...,¢, (for convenience, ¢;, ¥=1,2,...,p, indicates both the sets of the columns

and the sets of the indices of these columns), also given z, T € R*, let

d;=EGjCJ', t=1,p,
j€e

and

[}
gi=Yd;, i=1.,p, go=0.
i=1

If s; %0, j =1,...n, then B is determined uniquely by the equations

Bi, = B(z-(z-9\)) = F(@)-FZ-9) =,

Bd; = B(Z-giy-(T-0:)) = F(T-9:0)-FE-9) =, (21)
—dp == E(E—g,_l-z) = F(f’_gp-l)—F(z) =
Let B = [b;]- By (2.1),if (I, m) € M, then
F — e:’y.- ’ (2.2)

where me€e¢;, 1=1,2,...,p.

Notice that by (2.1), to get B, we need only to compute p function values since we already

have the value F(z) at the current step. The number of function evaluations at each iteration is



one less than the CPR-CM algorithm. For example (1.3), we take

dl=(’ls0:0)84;0r0)T1

d2=(07‘2’0:0r‘6’0)ry

ds=(0,0;’3y010"0)1"
and

yl=(61:0’01‘4;0y0)rr

ﬂ2=(61,62,0,64,65,0)T-

Then, we need only to compute the values of F(Z), F(7-¢,), and F(Z-g5), and the number of

function evaluations is 3 per iteration instead of 4 required by the CPR-CM algorithm.

Let

= [F'(F-g+td)dt, i=1,..,p. (2.3)

© by

Then
J.'d,' =¥, 1= l,...,p . (24)
Let J; = [Ji]. Since J; has the same sparsity as the Jacobian, by (2.4), we have that if

(!, m) € M, then

T
; Y
Jim = ’ (2~5)

where m€¢;, i=1,2, ..., p. Comparing (2.5) with (2.2), we have

J.-c’. = §cj, -(26)
where €¢; , i=1,...,p. Therefore, B can be written as
B=3% % Jigef . 2.7)
i=1 j€e,
To study the properties of the SFD algorithm, we assume that F’(z) satisfies the Lipschitz
condition, i.e. that there exist o; >0, t =1, ..., n such that
W(F (z)-F (¥)ell < ellz-yll, i=12...n, zy€D. (2.8)

1
Let a = (Y, a?)2, then
i=1



HF(z)-F (9)llr < allz-yll, z,¥y€D.

Now we have the following estimate for B:

Theorem 2.1. Suppose F’(z) satisfies Lipschitz condition (2.8), and B is determined by (2.1). If

feD,7-¢g;€D,i=1,..,p,and s; %0, i=1,2, .., n,then

WF(@)-Bllr < allz-z||. (2-9)
Proof. By (2.6) and (2.7),

WF(@)-Bll3 =% II(F(2)-B)el|?

fe=1

— 3 2 F@-Be; I (2.10)

=1 j€c,

= NE@-FeslI® -

i=1 j€e¢;
Using (2.3) and Lipschitz condition (2.8), we obtain

Y HE@)-F)e; 11

J€Ee;

1
)y ||(F’(E)—_£ F*(Z-g; + t(g: - 9:1))dt)e; ||®

I

J€¢;
< ; (‘-'j{ | 9 — ¢(g: ~ gi-a) || dt)? (2.11)

1 1
DI HI ] (1")||9i||d‘+.£“9.‘—1”‘dt)2

J€e; 0

1 1
< B e lsll+3lle 1P = lls1I°Y of.

J€e, j€e,
It follows from (2.10) and (2.11) that

F'@)-BlIE< 1slI? Y 5 af=o®|fs ]I (2.12)

=1 j€e¢,;



Then (2.9) follows from (2.12).

In (2.1), to determine B uniquely, we assume that s;5£0, j =1,...,n. However, sometimes
it may happen that ;=0 for some 1<¢<n. If this happens, then the fth column of B can
not be determined uniquely by (2.1). In this case, let

Q,={€{1,2..,n} &F#0},

and let

0,={1,2 .,0}\0,.
Now we deal with the general case in such a way that if 5 €Q,, then the jth column of Bis
determined uniquely by (2.1). If 5 €, then we let the jth column of B be equal to the jth
column of B. In practice, if |s;| is too close to zero the cancellation errors will become
significant. Therefore, there should be a lower bound 4 for |s;|. Now the SFD algorithm with a

global strategy can be stated as follows:

Algorithm 2.2. Given a consistent partition of the columns of the Jacobian, which divides the set
{1,2,..,n} into p subsets ¢y, cy -.) Cp, and given z',2z°€ R" such that

61'_1_ —2.1?'50 3.=1y21 U ,n,ateachStEPkZOZ

(1). Set

where 8% = z* - 2%,

(2). Compute F(z* - gF"), i=0,1, ..., p-1, and set

y;'k-l = F(Z‘ gl—ll) F(x g.‘k-l) , =L ..,p,
where F(z* - g}!) = F(z*7) .

(3). 1 (I, m) € M and |s57'| > 6, then set

T, k-1
ey
bl = ———8,,'_1 , (2.13)

otherwise set



b, = b,

where m€¢; +=1,2, ..., p .
(4). Solve B,s* = -F(z*).
(5). Choose z*+! by z**! = z* + s*, or by a global strategy.

(6). Check for convergence.

The SFD algorithm is also an update algorithm, and the update can be written as
B=B Y gef+¥ X Jdiejef, (2.14)
jen, i=1 jee,na,

The following result shows that the SFD algorithm is a secant algorithm.

Lemma 2.8. B satisfies the secant equations

Ed‘ =¥, '.=1; ST (2.15)
and (2.15) implies

Bs = F(z)-F(z)=1y .
The proof of Lemma 2.3 is straightforward.

Suppose that we have finished the kth step of the iteration. Then the information we have

is z*, F(z*), B;, and z**'. Let

k k .
d,'=28j61', l=1’~--p’
j€e,

[
guk=2d1kr i=1,.,p, g(k):O ’

i=1
and
1
J = [F(a*P —gl+tdh)dt, i=1,..,p. (2.16)
0
Then by (2.6),
J,'k+16j = Bk+18j , (217)
where y€c¢; , =1,2,...,p.
Theorem 2.4. Assume that F* satisfies Lipschitz condition (2.8). Let {z7} £} and {B;}]2} be gen-

i=0

erated by Algorithm 2.2. Suppose that 2iti_gj, ¢=0,1,2,...,p Fo,CD. If s¥=0 appears
j



consecutively in at most m steps for any specific 1 < ¢ < n, then for k 2> m,

k . .
HF(z**)-Beullr S 3 |la"-27|]. (2.18)

J=k-m

Proof. By the hypothesis of the theorem, given k, for any 1 < <n, there exists at least one

integer 0 < § < m such that s} 75£0. Let j(k,f) be the smallest one of these integers. Then,

Biiiei = Bi_jk )41 6i -
Let 1€¢;. Then,

By _jiynre; = JH %,

by (2.17). Therefore,

[1(F* (z**")~Byi)e: ||

(- ("Hl)-Bk-j(k..')+1)¢.' [l

I

< WF(@*)-F (a1 N)e || + ||(F (") = Bujipn)e ||
= ||(F" (") -F (2700 || + || (F (27004~ pi®D e, |]
< a; ” gkt _ gh-i(ki)1 ” + o ”zk—j(k,i)-l»l_zk-j(k,i) ”
&
<e; ), [l
I=k~j(k,i)
&
<o Y l2™-x'] .
l=k-m
Hence,
k+1 2 = k
“(z -BrallFr = z — D y1)6
| F (z**)-Bouall# = 35 ||(F " (z**")~Brn)e: ||
=1 :
R ., (2.19)
S(Y Ne™-a | Y of.
Fomb-m fom]

Then, (2.18) follows from (2.19).

3. A Kantorovich-Type Analysis.

The following estimate for the SFD algorithm is sharper than that for Broyden’s algorithm

given by Dennis [4].



Theorem 8.1. Assume that F* satisfies Lipschitz condition (2.8) and that {z*} and {B,} are gen-

erated by Algorithm 2.2 with ||z'-2°|| <6. If {zi*'~g/, i =0,1,...,p}}=o C D, then

k - -
HF (z**)-Biullr S a ) ||a7-27 || +ab . (3.1)

§=0
Proof. Inequality (3.1) can be obtained immediately by setting m = k+1 in (2.18).

Theorem 8.8. Let F’ satisfy Lipschitz condition (2.8). Suppose that z7!, z°€ D, and that B,

generated by z~! and z° is a nonsingular n X n matrix such that

-2l <6 1B |l <6 |IBSFGIII <n,

2
h=—2Bn 1 ,

(1-3aBo)f — 6 (3:2)

and
1

afb < 3

If 5(z°,2¢t*)C D, where
g — 123080 3“’% ~—2a% (1- V1-6k) , (3.3)

then {z*}, generated by Algorithm 2.2 without any global strategy, converges to z*, which is the

unique root of F(z) in 5(z°% t)N D, where

(1) F |

Proof. Consider the scalar iteration

tk+l_tk == ﬂf(tk), to—_o, k= 0,1,2, Ty,
where
3 o 1-3afé n
t) = —at*—(——)t 4 —
1= $ar-(28 2

It is easy to show that the sequence {¢} satisfies the difference equation

a
iy~ =38 ['é‘(tk ~ta)tat +ad] (G -t,y), k=1,2,



From this equation, it follows that {t,} is a monotonically increasing sequence and

lim t, =t* ,
b—ooo*

where t* is the smallest root of f(¢).
Now, by induction we will prove the following estimate:

||z**1-2% || < tia—-&, £=0,1,2, -+ . (3.4)

For k =0, we have
l[z'=2° < n=1t-to.
Suppose that (3.4) holds for k= 0,1,2,...m —1. Then
l|z™-2°|] < ¢°.
Therefore, {z*} C 5(z%1¢°), and

{z*—gF,i=1,---p} C 5(2°2t*), k=0,1,...,m.
Using Theorem 3.1, we have
||Bn-Boll < ||Ba~F (") |p+1F (z™)-F () |r+||F(z°)-Bollr
m_l . .
<2a)) ||2*-2'|| +2ab < 2at’ + 208 < —2-? .

=0

Then by Banach lemma,

-1 B _
1B < 1B =38

Hence,
I Izn+l_zm “

< 1B lI# | 1FE™)-F(z"") - Buy(e™ -2 )| |

m_2 o 1]
< 3p[Z e e || +a 3 |12 = || +ed]| | 2n = 2nal

§==0
44
S 3ﬂ['§_ I I(tm _tm-l)+a tm—l +a6](tm - tm—l) = tm+1_tm .

This completes the induction. By (3.4), it is easy to show that there is an z* € D such that

limz* =z*
k—00

10



The uniqueness of z* in 5(z° ¢ )ND can be obtained from Ortega and Rheinboldt’s Theorem

12.6.4 (8, p.425] by setting A(z) = B,.

4. Local Convergence Properties.

To study the local convergence of the SFD algorithm, we assume that F:D C R" — R" has

the following property:
There $s an z° €D, such that F(z°)=0 and F "(z°) is nonsingular. (4.1)
Theorem 4.1. Assume that F:D C R* — R* satisfies (4.1) and that F'* satisfies Lipschitz condi-

tion (2.8). Let {z*} be generated by Algorithm 2.2. without any global strategy. Then there exist

¢, § > 0 such that if 27}, 2°€ D satisfy

H2°-2"]| <, |z -2 <,

then {z"} is well defined and converges g-superlinearly to z°.

Proof. Notice that we can choose € small enough so that || B3'F(z%)}| is also small such that
h <% and that S5(z°2t*)C D, where h and t* are defined by (3.2) and (3.3) respectively.
When § is small enough, we also have
1
1) —
afh < =,

where § is defined in Theorem 3.2. Therefore, by Theorem 3.2,
{z*'+ g} i=1,2,..,p} C D, k=0,1, ---

Thus, from (2.14) and the proof of Theorem 2.1, we have

||F*(z*)-B||?
= L NF()-B)e:|I*+ X1 1(F*(z")-B)e: |1
=05 €0,

=3 B 1P =202 112+ B 11 (=)= B

i=1 j€e, M1,

11



-5z 1] (F*(2")=F" =g+ tlge=giaecdt |

§=1 j€c,Nl,

+ 3 |I(F(z")-B)e; ||®
e,

S oA|lz*-F|| +|7-2|1)*+ IF"(z")-BI|}

< o2f|z*-F|| + ||z -2 ||+ ||[F'(z")-B||F.
Therefore,

HF*(z*)-Bllr < |IF"(z°)-Bllr + 3ao(z,7),

where

o(z,7)=max{||Z-2"||, ||z-="]|}.

Notice that by Theorem 2.1 and Lipschitz condition (2.8),

|F“(z) - Boll
< IF ()= F*(@)|lr + ||F (%) - Boll s
< alls® - 2] +alla®- 2]

< afe + §)
Thus, by Dennis and Mor€’s [5] Theorem 5.1, we know that {z*} converges at least g-linearly to

’
z .

According to Dennis and More’s [5] Theorem 3.1, to get g-superlinear convergence, we need
g

only to prove that

y (B -F (2" )= -2")]|
im =

. 4.2
ey ”zk+1_zk ” 0 ( )

If for all 1 < i< n, sf =0 appears consecutively in at most m steps, then by Theorem 2.4 it

is easy to show that

Jim ||B,—F(z°)[|r =0. (4.3)

12



Thus, (4.2) follows immediately from (4.3).

Otherwise, let

Ay, ={i€{1,2,..,n}: For any k>0, therc czists at

least onc integer m >k such that 8" 5£ 0},

and let A, = {1,...,n} \ Az, Then

B,-F’(z*)= ZL; (By-F’(2*))e; e + g (By—-F'(z"))e;el .

From the definition of A, there exists a large integer kg such that sf =0 for all {€A, and k> k.

Therefore,

Y (Bi-F’(z’)e;ef(z* ' -2*) =0,

A, (4.4)
for k> ko. Now we show that
. sp_ e T _
*h—x'l:on.gz (Bi-F'(z"))e;el ||r = 0. (4.5)
In the first part of the proof, we proved that klim I z*-z* || = 0. This implies that given ¢ > 0,
—+00

there exists an integer K such that

E_* €

- —_ k .

Ne*-z"|l < 5=, VE>K

By the definition of Aj, there exists an integer K, which depends on K, such that for every
i € A,, there exists at least one integer 0 < y < K, such that sX+i5£ 0. Let K = K + K. For
k > K and i€A,, define

jki)=min{j: st #0).
Then k — 5(i,k) > K. Let i€¢;, 1 <1 < p, we have that

Bye; = By_j(i, iy 16 = .f,"'j("")+1c; .

Thus, by Lipschitz condition (2.8),

13



[1(Bs = F*(z*)ei 1]
= ||(JFIE _F(2*))e; |2

|| O (4RI — gD 4 (gD _ g P (et |
o
< ([ || 2551 gheih) 4 4(ghei) _ ghofe) _ g | e
0
< e[t g 4 LY gh | o Lk ) g2
< a(|] 20— g || 4 | 2RI |2

< af(2|| 20 gt ||+ |2t 2|

2
€ € yo o€
< Cl'.-2(2-3: + %‘) = a;? .
Then
1D (Be-F(2*))e;el || £ .
€A,
=Y H(B:-F " (z"))e; ||
icA,
¢ 2 2
< -z E of < €.
@ iea,
Therefore,

1Y (Bi-F’(z")eel||r <e.
i€d,
This completes the proof of (4.5).
By (4.4) and (4.5),

[1(Bi - F " (2"))=**! - 24) ||

lim

k—00 ”zk“—z" ”
| S (Be-F (o NeseF(a*+1-2H)]|
- icA,
— b_fgo “zk+1_zk”

< Iim|| Y (Be~F(z")eiel||r =0.
koo "4,

14



Theorem 4.2. Assume that F, 7, z° and {z*} satisfy the hypotheses of Theorem 4.1. If, for any
1<i<n, s#=0 appears consecutively in at most m steps, then the r-convergence order is not
less than 7, where 7 is the unique positive root of

tmtZ_gmtl_1=0. (4.8)

1 +2‘f5 ~ 1.618.

In particular, if sf5£0, i =1,...,n, k=1,2,3,..., then 1=

Proof. Notice that (4.3) implies that there exist ko and §> 0 such that [1Bit}| < B for all
k > ky. Thus, by Theorem 2.4,
l|z**1~2*|| = ||2* -2"-B{'F(z*)]]
< B3I p{I|F(z*)-F(z")-F " (z*)(z* - 2°) |
+([|1F*(z")-F ()| r + || F (z*)-Be || F) 1 2* -2" |1}
3 ke k-1 PR i . (4.7)
< Bgalle-27|| +a Y =2 ||}z -2 |

j=k-m-1

k .
< saB( X a2 IDlle*-2"]]

Je=k-m-1
Thus, the desired result follows from Ortega and Rheinboldt’s Theorem 9.2.9 [8, p.291].

5. Numerical Results.

We computed some examples with tridiagonal Jacobians by the CPR algorithm and Algo-
rithm 2.2. In this section, we compare the numerical results from the two algorithms. The global
strategy we used in computing the examples is the line search with backtracking strategy (see
Dennis and Schnabel [6]. If p* = -B;'F (z*) is not a descent direction, then we try —-pF. If it is
not a descent direction either, then the algorithm fails. The stopping test we used is

|z:'h+l - zs'b'

- <e, 5.1
1<i<amax{ | zF*|, typzi} T o0

and we choose typz; = 10~% and ¢ = 1075. For the lower bound of |s; |, we choose

0 = Vmacheps ||s]] .

We used double precision, and the machine precision is 2.22d-16.

Example 5.1 is new, and it can be seen to be an extension of the Rosenbrock [9] function

(also see Mor€, Garbow and Hillstrom [7]) to nonlinear system of equations with a tridiagonal

15



structure. Example 5.2 was given by Broyden [1] (also see Mor€, Garbow and Hillstrom [7}).

The results are shown in the tables below, where IT is the number of iterations, NF is the
number of function (F(z)) evaluations, and LN is the number of line searches in which the step
length A< 1. ND is the number of nondecrease directions. ZR is the number of the iterations that

there exists an integer j such that |s;| < 8. z0 is the initial guess.

Ezample 5.1.
f1(z) = 8(z,-23),
fi(z) = 16z;(2? - z;.)) - 2(1 - 2;) + 8(z;-2}4,), =2, n-L,
fu(z) = 162,(z? ~ 2,4) - 2(1 - 7,),
n=29

g1 = (-1, -1, ..., -1)7, 22 = (-0.5, 0.5, ..., -0.5)T, z3 = (2,2, ..., 2)T.

z20=2z1
Algorithms
IT | NF | LN | ND { ZR
CPR 22 88 15 0 0
Alg. 2.2 24 73 13 4 0
Table 5.1 (a).
z20=22
Algorithms
IT | NF | LN | ND | ZR
CPR 22 88 15 0 0
Alg. 2.2 22 87 13 1 0
Table 5.1 (b).
20=z3
Algorithms
ITI{NF |LNI|ND|ZR
CPR 8 32 0 0 0
Alg. 2.2 10 31 0 0 0

Table 5.1 (c).
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Ezample 5.2 (Broyden tridiagonal function).
f,-(z) = (3 - 22.')2,' - X1 — 22.'.,,.1 + 1,

To = Tpy41 = 0,

n =29,

21 =(-1,-1, .., -1)T, 22 =(-0.3,03, .., 0.3, 0.3)7,

z3 = (-10, -10, ..., -10)T.

z20=z1
Algorithms
IT | NF | LN ZR
CPR 5 20 0 0
Alg. 2.2 8 19 0 0
Table 5.2 (a).
z0=2z2
Algorithms
IT | NF | LN ZR
CPR 5 20 0 0
Alg. 2.2 6 19 0 0
Table 5.2 (b).
20=z3
Algorithms
IT | NF [ LN ZR
CPR 8 | 32 0 0
Alg. 2.2 10 | 31 0 0

6. Concluding Remarks.

We have presented an algorithm for solving sparse nonlinear systems of equations. This
algorithm is based on consistent partitions of the columns of the Jacobians, and it is a combina-
tion of the CPR-CM algorithm and a secant algorithm. This algorithm incorporates the advan-
tages of the CPR-CM algorithm and secant algorithms in such a way that it reduces by one the

number of function evaluations required by the CPR-CM algorithm at each iteration, and it has

Table 5.2 (c).
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good local convergence properties. We have shown that the SFD algorithm is locally ¢-
superlinearly convergent, and that under reasonable assumptions, the r-convergence order of the

SFD algorithm is not less than 1+2‘/5

, which is the r-convergence order of the one dimensional

secant algorithm. Our numerical results indicate that when p, the number of the groups in a par-
tition of the columns of the Jacobian, is not large, the SFD algorithm is probably more efficient

than the CPR-CM algorithm.

The idea exploited here can also be used with Powell and Toint’s [10] work, which will lead

to a method for unconstrained optimization problems. This will be our future work.
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